A novel covalent approach to bio-conjugate silver coated single walled carbon nanotubes with antimicrobial peptide

نویسندگان

  • Atul A. Chaudhari
  • D’andrea Ashmore
  • Subrata deb Nath
  • Kunal Kate
  • Vida Dennis
  • Shree R. Singh
  • Don R. Owen
  • Chris Palazzo
  • Robert D. Arnold
  • Michael E. Miller
  • Shreekumar R. Pillai
چکیده

BACKGROUND Due to increasing antibiotic resistance, the use of silver coated single walled carbon nanotubes (SWCNTs-Ag) and antimicrobial peptides (APs) is becoming popular due to their antimicrobial properties against a wide range of pathogens. However, stability against various conditions and toxicity in human cells are some of the major drawbacks of APs and SWCNTs-Ag, respectively. Therefore, we hypothesized that APs-functionalized SWCNTs-Ag could act synergistically. Various covalent functionalization protocols described previously involve harsh treatment of carbon nanotubes for carboxylation (first step in covalent functionalization) and the non-covalently functionalized SWCNTs are not satisfactory. METHODS The present study is the first report wherein SWCNTs-Ag were first carboxylated using Tri sodium citrate (TSC) at 37 °C and then subsequently functionalized covalently with an effective antimicrobial peptide from Therapeutic Inc., TP359 (FSWCNTs-Ag). SWCNTs-Ag were also non covalently functionalized with TP359 by simple mixing (SWCNTs-Ag-M) and both, the FSWCNTs-Ag (covalent) and SWCNTs-Ag-M (non-covalent), were characterized by Fourier transform infrared spectroscopy (FT-IR), Ultraviolet visualization (UV-VIS) and transmission electron microscopy (TEM). Further the antibacterial activity of both and TP359 were investigated against two gram positive (Staphylococcus aureus and Streptococcus pyogenes) and two gram negative (Salmonella enterica serovar Typhimurium and Escherichia coli) pathogens and the cellular toxicity of TP359 and FSWCNTs-Ag was compared with plain SWCNTs-Ag using murine macrophages and lung carcinoma cells. RESULTS FT-IR analysis revealed that treatment with TSC successfully resulted in carboxylation of SWCNTs-Ag and the peptide was indeed attached to the SWCNTs-Ag evidenced by TEM images. More importantly, the present study results further showed that the minimum inhibitory concentration (MIC) of FSWCNTs-Ag were much lower (~7.8-3.9 µg/ml with IC50: ~4-5 µg/ml) compared to SWCNTs-Ag-M and plain SWCNTs-Ag (both 62.6 µg/ml, IC50: ~31-35 µg/ml), suggesting that the covalent conjugation of TP359 with SWCNTs-Ag was very effective on their counterparts. Additionally, FSWCNTs-Ag are non-toxic to the eukaryotic cells at their MIC concentrations (5-2.5 µg/ml) compared to SWCNTs-Ag (62.5 µg/ml). CONCLUSION In conclusion, we demonstrated that covalent functionalization of SWCNTs-Ag and TP359 exhibited an additive antibacterial activity. This study described a novel approach to prepare SWCNT-Ag bio-conjugates without loss of antimicrobial activity and reduced toxicity, and this strategy will aid in the development of novel and biologically important nanomaterials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bio-functionalization of multi-walled carbon nanotubes.

Here we present a hybrid approach to functionalize multi-walled carbon nanotubes in aqueous solution, exploring a non-covalent binding strategy. We focus on formation of hybrid complexes consisting of carbon nanotubes decorated by single stranded DNA, non-covalently attached using surfactants as intermediate layers. Unlike single walled carbon nanotubes, revealing easy side wall wrapping of DNA...

متن کامل

Non-covalent interactions between carbon nanotubes and conjugated polymers.

Carbon nanotubes (CNTs) are interest to many different disciplines including chemistry, physics, biology, material science and engineering because of their unique properties and potential applications in various areas spanning from optoelectronics to biotechnology. However, one of the drawbacks associated with these materials is their insolubility which limits their wide accessibility for many ...

متن کامل

A DFT study of interaction of folic acid drug on functionalized single-walled Carbon Nanotubes

In this work, the structural and electronic properties of folic acid molecule on functionalized (7,0)zigzag single-walled carbon nanotube was studied in gas phase on the basis of density functionaltheory (DFT). Furthermore, covalent interaction of folic acid with single-walled carbon nanotube wasinvestigated and its quantum molecular descriptors and binding energies were calculated. The DFTB3LY...

متن کامل

A Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes

The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...

متن کامل

On the Buckling Response of Axially Pressurized Nanotubes Based on a Novel Nonlocal Beam Theory

In the present study, the buckling analysis of single-walled carbon nanotubes (SWCNT) on the basis of a new refined beam theory is analyzed. The SWCNT is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new proposed beam theory has only one unknown variable which leads to one equation similar to Euler beam theory and is also free from any shear ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2016